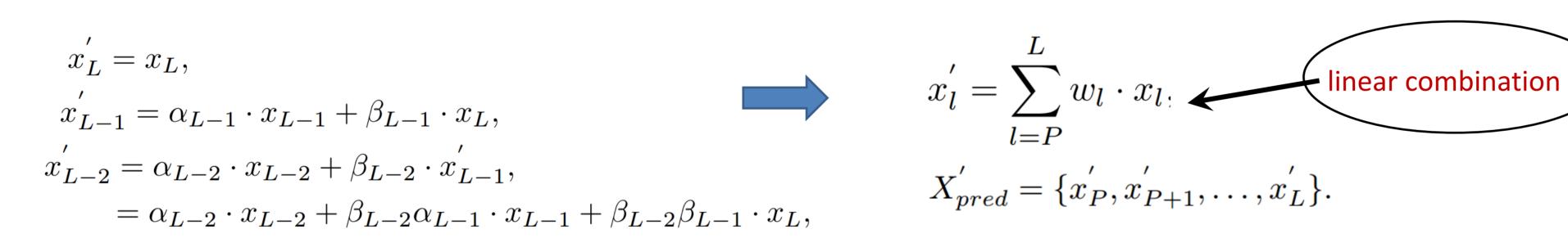
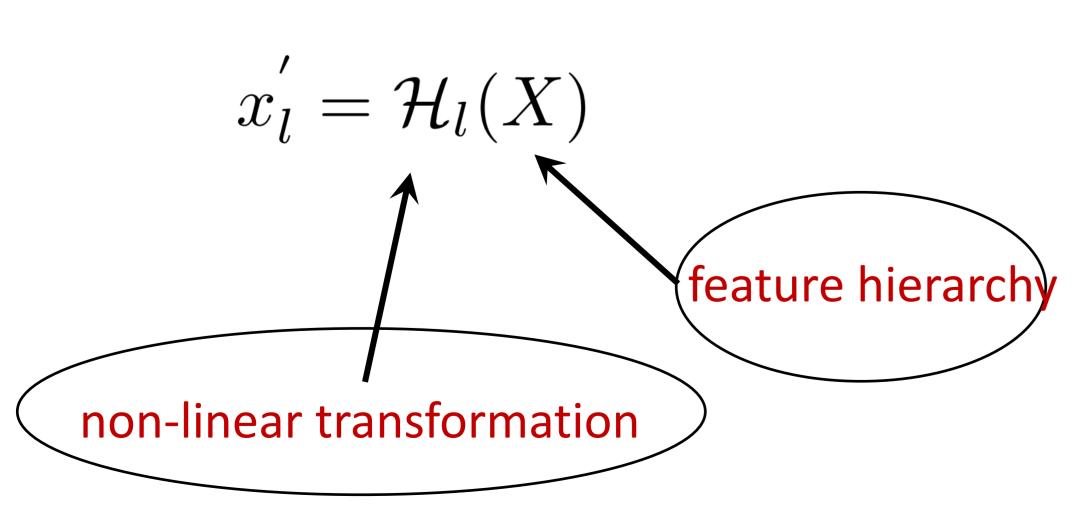


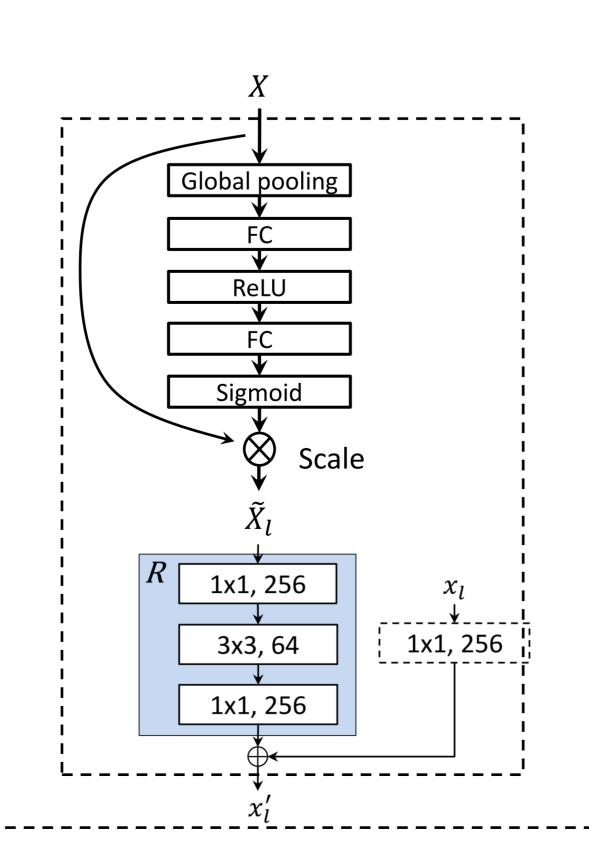
Deep Feature Pyramid Reconfiguration for Object Detection

Tao Kong¹, Fuchun Sun¹, Wenbing Huang², Huaping Liu¹
¹Department of CST, Tsinghua University, ²Tencent Al Lab



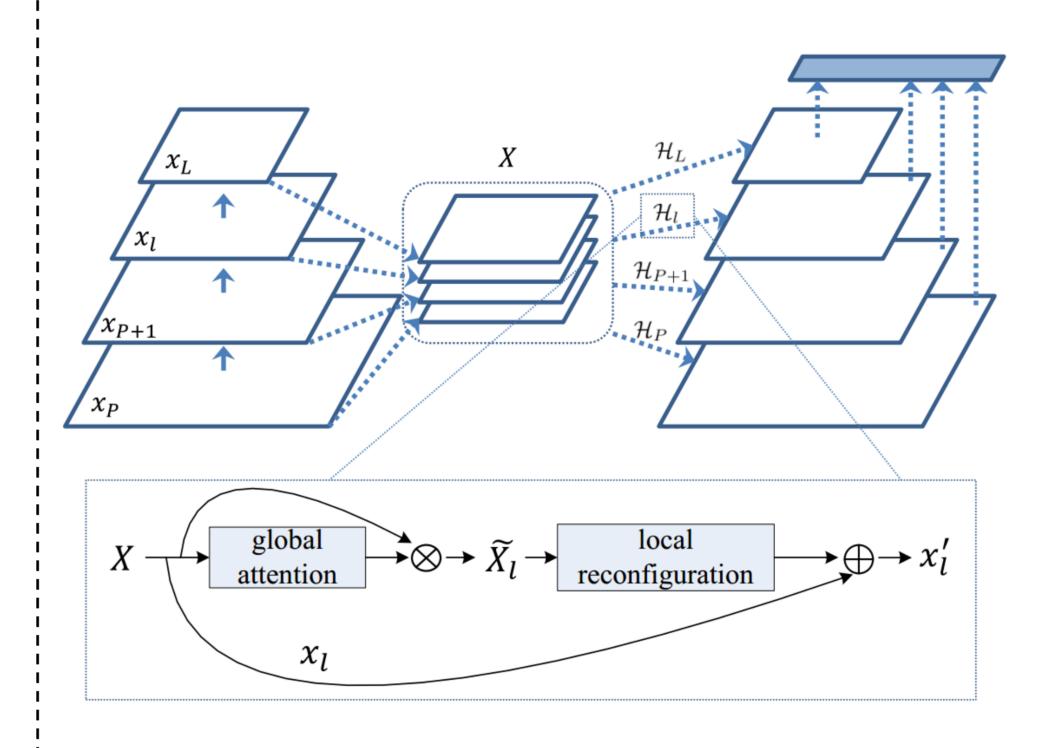
Feature pyramid based object detectors


Take a deeper look at FPN


The total backbone network outputs: $X_{net} = \{x_1, x_2, ..., x_L\}$, In SSD the prediction feature map sets can be expressed as: $X_{pred} = \{x_P, x_{P+1}, ..., x_L\}$ In FPN, we get

Deep Feature Reconfiguration

Feature generating process at *I-th* level

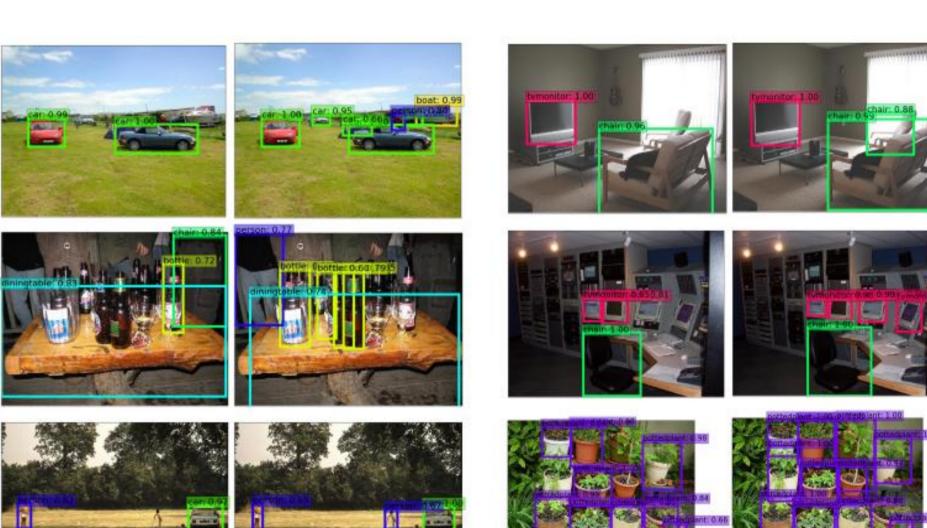

Small objects

High resolution

Large objects,

Low resolution

Methodology



Advantages

- ✓ The deeper layers also have more opportunities to re-organize its features, and has more potential for boosting results;
- ✓ The global attention makes the network to focus more on features with suitable semantics;
- ✓ The local residual learn block gives more opportunity to better model the feature hierarchy.

Main results

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	method	train Data	input size	network	Average Precision		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.5	0.75	0.5:0.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{two\text{-}stage}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OHEM++43	trainval	$\sim 1000 \times 600$	VGG-16	45.9	26.1	25.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Faster 39	$\operatorname{trainval}$	$\sim 1000 \times 600$	VGG-16	42.7	-	21.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R-FCN 6	trainval	$\sim 1000 \times 600$	ResNet-101	51.9	-	29.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CoupleNet 49	trainval35k	$\sim 1000 \times 600$	ResNet-101	54.8	37.2	34.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$one ext{-}stage$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSD300[34]	trainval35k	300×300	VGG-16	43.1	25.8	25.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSD51234	trainval35k	512×512	VGG-16	48.5	30.3	28.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSD513 15	trainval35k	513×513	ResNet-101	50.4	33.1	31.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DSSD321 15	trainval35k	321×321	ResNet-101	46.1	29.2	28.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DSSD513[15]	trainval35k	513×513	ResNet-101	53.3	35.2	33.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RON320 26	trainval	320×320	VGG-16	47.5	25.9	26.2
	YOLOv2 38	trainval35k	544×544	DarkNet-19	44.0	19.2	21.6
	RetinaNet 31	trainval35k	500×500	ResNet-101	53.1	36.8	34.4
Ours300 trainval 300×300 ResNet-101 50.5 32.0 31.3	Ours300	trainval	300×300	VGG-16	48.2	29.1	28.4
	Ours512	trainval	512×512	VGG-16	50.9	32.2	31.5
Ours512 trainval 512×512 ResNet-101 54.3 37.3 34.6	Ours300	trainval	300×300	ResNet-101	50.5	32.0	31.3
	Ours512	trainval	512×512	ResNet-101	54.3	37.3	34.6

SSD300 O

SSD300 Ours300

MS COCO test-dev2015 detection results.

method	backbone	FPS	mAP(%)
SSD (Caffe) [34]	VGG-16	46	77.5
SSD (ours-re)	VGG-16	44	77.5
SSD+lateral	VGG-16	37	78.5
SSD+Local only	VGG-16	40	79.0
SSD+Local only(no res)	VGG-16	40	78.6
SSD+Global-Local	VGG-16	39.5	79.6

Effectiveness of designs within SSD (VOC 2007 Test)

method	backbone	$\mathrm{mAP}(\%)$	
Faster 39	VGG-16	73.2	
Faster [6]	ResNet-101	76.4	
Faster(ours-re)	ResNet-50	77.6	
Faster(ours-re)	ResNet-101	78.9	
Faster+FPNs	ResNet-50	78.8	
Faster+FPNs	ResNet-101	79.8	
Faster+Global-Local	ResNet-50	79.4	
Faster+Global-Local	ResNet-101	80.6	

Ours300

Effectiveness of designs within Faster R-CNN (VOC 2007 Test)

Kong T, Sun F, Huang W, et al. Deep Feature Pyramid Reconfiguration for Object Detection[J]. arXiv preprint arXiv:1808.07993, 2018.