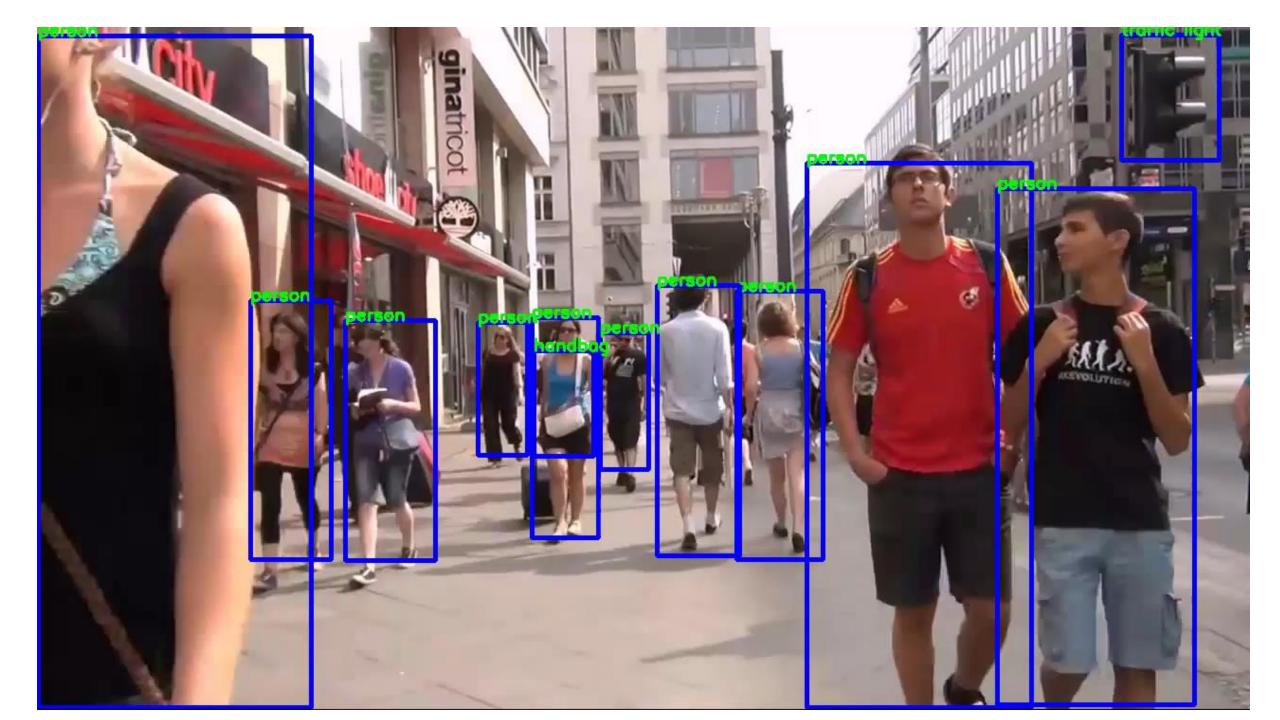
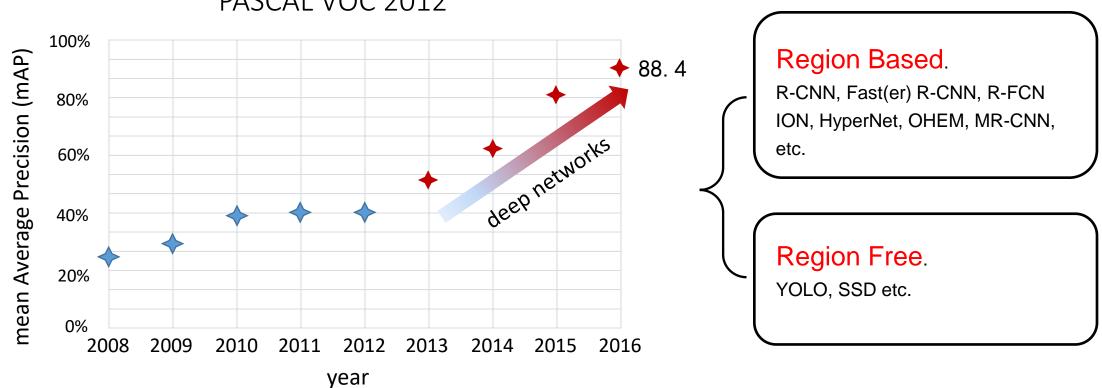
RON: Reverse Connection with Objectness Prior Networks for Object Detection

Tao Kong¹, Fuchun Sun¹, Anbang Yao², Huaping Liu¹, Ming Lu³, Yurong Chen²

¹Department of CST, Tsinghua University, ²Intel Labs China ³Department of EE, Tsinghua University

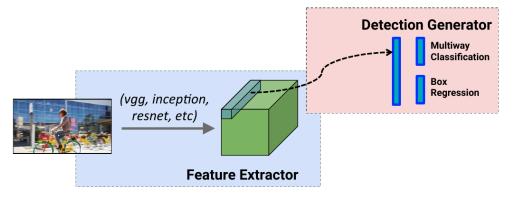


The progress of object detection



PASCAL VOC 2012

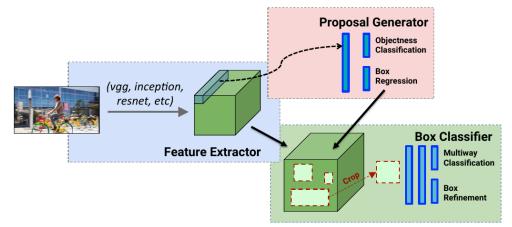
Two object detection architectures



SSD

a) featurized image pyramid

- b) Single-shot detector with on CNN
- c) Multiple anchors at one level feature
- 1.<u>High-speed</u>
- 2. No repeated computations
- 3.Not easy to train
- 4. Strugle with small instances



Faster R-CNN

- a) Region proposal network
- b) Region-wise object detection sub-network
- 1. High-accuracy, easy to train
- 2. Easy to follow
- 3.Resource/time consuming
- 4. Repeated computation with region-wise computing

So, what is the lesson?

 $\sqrt{\text{Feature pyramid works better in locating all scales of objects}}$ from: SSD, HyperNet, ION, MR-CNN

 $\sqrt{\text{Using region proposal network to reduce searching space}}$ from: R-FCN, Faster R-CNN, Fast R-CNN

 √ A fully CNN pipeline with no repeated computation can achieve high detection performance.
from: SSD, R-FCN RON

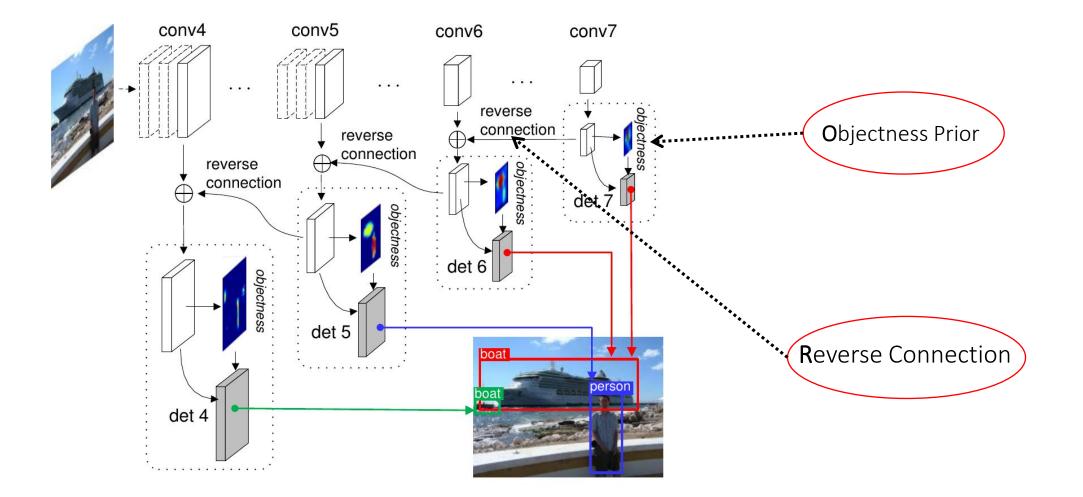
So, what is the lesson?

 $\sqrt{\text{Feature pyramid works better in locating all scales of objects}}$ from: SSD, HyperNet, ION, MR-CNN

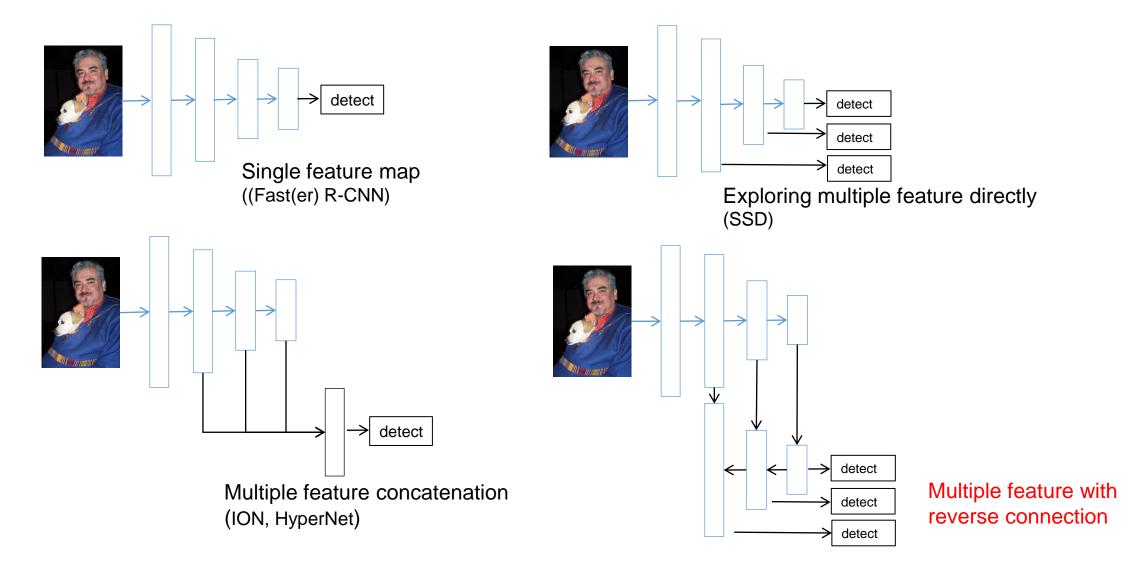
 $\sqrt{\text{Using region proposal network to reduce searching space}}$ from: R-FCN, Faster R-CNN, Fast R-CNN

 √ A fully CNN pipeline with no repeated computation can achieve high detection performance.
from: SSD, R-FCN RON

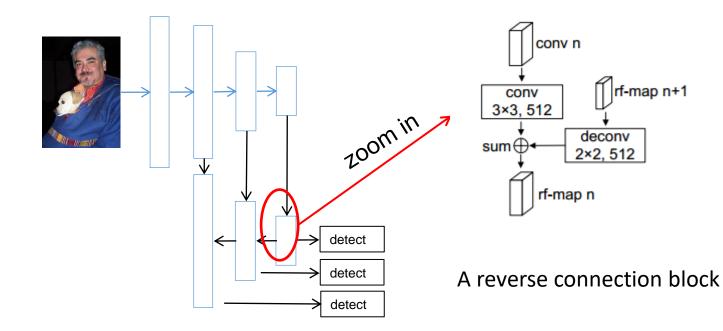
RON: Reverse Connection with Objectness Prior Networks



What is reverse connection and why?



What is reverse connection and why?



- b) The semantic information of former layers can be significantly enrichedc) Keep the spatial sizes
- d) Easy to do multiple level detection

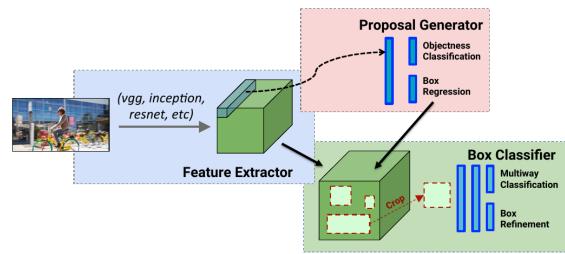
So, what is the lesson?

 $\sqrt{\text{Feature pyramid works better in locating all scales of objects}}$ from: SSD, HyperNet, ION, MR-CNN

 $\sqrt{\text{Using region proposal network to reduce searching space}}$ from: R-FCN, Faster R-CNN, Fast R-CNN

 √ A fully CNN pipeline with no repeated computation can achieve high detection performance.
from: SSD, R-FCN RON

From region propsoal boxes to region proposal maps



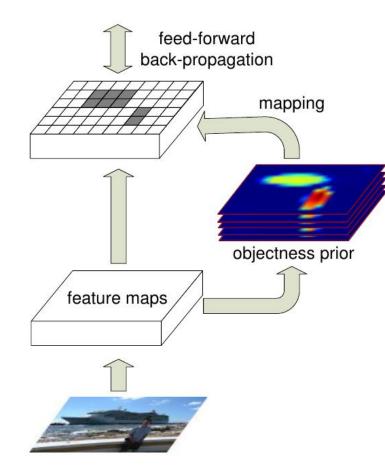
Faster R-CNN:

Region proposal network (RPN) is fully convolutinal, but detection subnetwork is with repeated computation (ROI-Pooling).

Why?

The bbox regression in RPN changes the spatial locations of all boxes, which breaks the anchor's reletionship with its corresponding kernel.

From region propsoal boxes to region proposal maps



Objectness pior:

Share anchors between RPN and detector, make it posible to detect objects with fully ConvNet.

 \sqrt{No} repeated computations, much faster

 $\sqrt{1}$ The total network is fully convolutional

 $\sqrt{1}$ There are one map for each type of anchors

different from these mask-based methods.

Region proposal maps



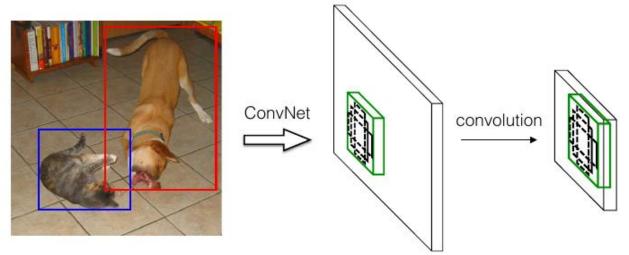
So, what is the lesson?

 $\sqrt{\text{Feature pyramid works better in locating all scales of objects}}$ from: SSD, HyperNet, ION, MR-CNN

 $\sqrt{\text{Using region proposal network to reduce searching space}}$ from: R-FCN, Faster R-CNN, Fast R-CNN

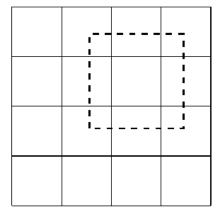
 √ A fully CNN pipeline with no repeated computation can achieve high detection performance.
from: SSD, R-FCN RON

RON bounding box generation

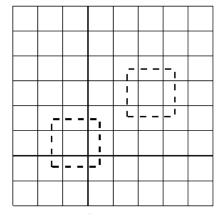


Convolutinal output in this position

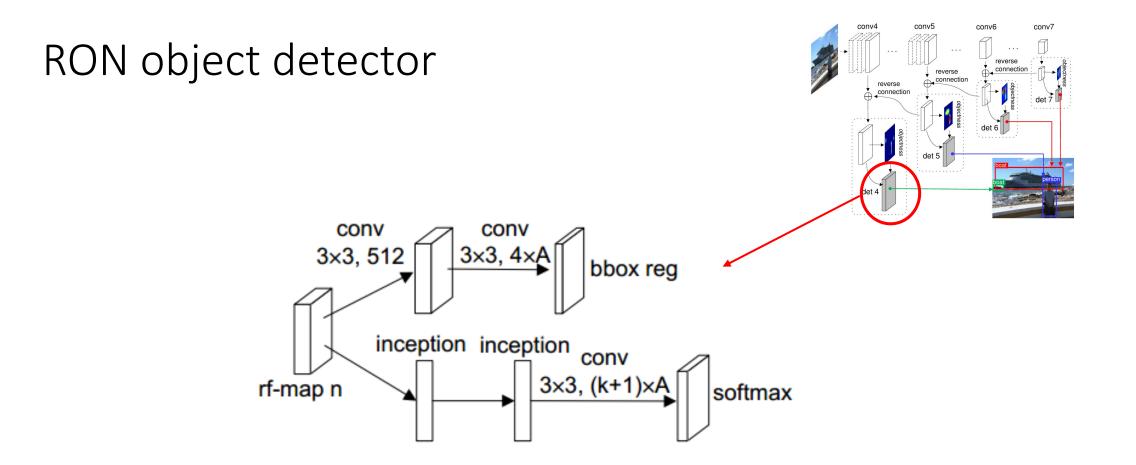
- a) sub-network for objectness
- b) sub-network for detection with a)
- c) sub-network for bounding box regression



4*4 feature map

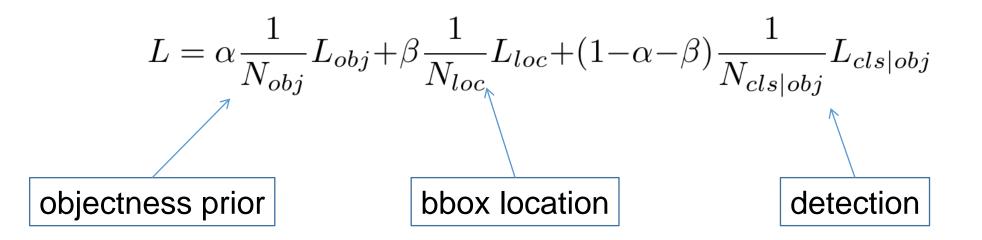


8*8 feature map



Object detection and bounding box regression modules. Top: bounding box regression; Bottom: object classification

RON optimization



optimize the network iointly

Mai	n	resu	lts

Method	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persor	ı plant	sheep	sofa	train	tv
Fast R-CNN[10]	70.0	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4
Faster R-CNN[23]	73.2	76.5	79.0	70.9	65.5	52.1	83.1	84.7	86.4	52.0	81.9	65.7	84.8	84.6	77.5	76.7	38.8	73.6	73.9	83.0	72.6
SSD300[19]	72.1	75.2	79.8	70.5	62.5	41.3	81.1	80.8	86.4	51.5	74.3	72.3	83.5	84.6	80.6	74.5	46.0	71.4	73.8	83.0	69.1
SSD500[19]	75.1	79.8	79.5	74.5	63.4	51.9	84.9	85.6	87.2	56.6	80.1	70.0	85.4	84.9	80.9	78.2	49.0	78.4	72.4	84.6	75.5
RON320	74.2	75.7	79.4	74.8	66.1	53.2	83.7	83.6	85.8	55.8	79.5	69.5	84.5	81.7	83.1	76.1	49.2	73.8	75.2	80.3	72.5
RON384	75.4	78.0	82.4	76.7	67.1	56.9	85.3	84.3	86.1	55.5	80.6	71.4	84.7	84.8	82.4	76.2	47.9	75.3	74.1	83.8	74.5
RON320++	76.6	79.4	84.3	75.5	69.5	56.9	83.7	84.0	87.4	57.9	81.3	74.1	84.1	85.3	83.5	77.8	49.2	76.7	77.3	86.7	77.2
RON384++	77.6	86.0	82.5	76.9	69.1	59.2	86.2	85.5	87.2	59.9	81.4	73.3	85.9	86.8	82.2	79.6	52.4	78.2	76.0	86.2	78.0

Table 1. Detection results on PASCAL VOC 2007 test set. The entries with the best APs for each object category are bold-faced.

Method	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	n plant	sheep	sofa	train	tv
Fast R-CNN[10]	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
OHEM[26]	71.9	83.0	81.3	72.5	55.6	49.0	78.9	74.7	89.5	52.3	75.0	61.0	87.9	80.9	82.4	76.3	47.1	72.5	67.3	80.6	71.2
Faster R-CNN[23]	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
HyperNet[16]	71.4	84.2	78.5	73.6	55.6	53.7	78.7	79.8	87.7	49.6	74.9	52.1	86.0	81.7	83.3	81.8	48.6	73.5	59.4	79.9	65.7
SSD300[19]	70.3	84.2	76.3	69.6	53.2	40.8	78.5	73.6	88.0	50.5	73.5	61.7	85.8	80.6	81.2	77.5	44.3	73.2	66.7	81.1	65.8
SSD500[19]	73.1	84.9	82.6	74.4	55.8	50.0	80.3	78.9	88.8	53.7	76.8	59.4	87.6	83.7	82.6	81.4	47.2	75.5	65.6	84.3	68.1
RON320	71.7	84.1	78.1	71.0	56.8	46.9	79.0	74.7	87.5	52.5	75.9	60.2	84.8	79.9	82.9	78.6	47.0	75.7	66.9	82.6	68.4
RON384	73.0	85.4	80.6	71.9	56.3	49.8	80.6	76.8	88.2	53.6	78.1	60.4	86.4	81.5	83.8	79.4	48.6	77.4	67.7	83.4	69.5
RON320++	74.5	87.1	81.0	74.6	58.8	51.7	82.1	77.0	89.7	57.2	79.9	62.6	87.2	83.2	85.0	80.5	51.4	76.7	68.5	84.8	70.4
RON384++	75.4	86.5	82.9	76.6	60.9	55.8	81.7	80.2	91.1	57.3	81.1	60.4	87.2	84.8	84.9	81.7	51.9	79.1	68.6	84.1	70.3

Table 2. Results on PASCAL VOC 2012 test set. All methods are based on the pre-trained VGG-16 networks.

+2.5%

+2.3%

Main results

Method	Train Data	Ave			
Method	ITalli Data	0.5	0.75	0.5:0.95	
Fast R-CNN[10]	train	35.9	-	19.7	_
OHEM[26]	trainval	42.5	22.2	22.6	
OHEM++[26]	trainval	45.9	26.1	25.5	
Faster R-CNN[23]	trainval	42.7	-	21.9	
SSD300[19]	trainval35k	38.0	20.5	20.8	
SSD500[19]	trainval35k	43.7	24.7	24.4	
RON320	trainval	44.7	22.7	23.6	_
RON384	trainval	46.5	25.0	25.4	
RON320++	trainval	47.5	25.9	26.2	
RON384++	trainval	49.5	27.1	27.4	+3.7%

Table 3. MS COCO test-dev2015 detection results.

Main results

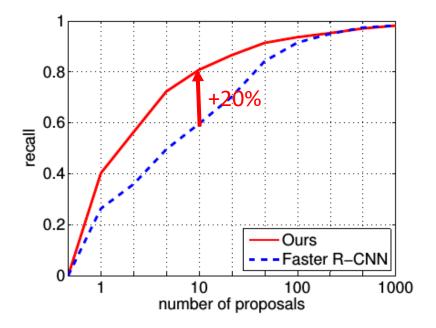
2007 test	2012 test
78.8	75.9
-	80.1
-	80.0
78.7	76.3
80.2	79.0
80.3	78.7
81.3	80.7
	78.8 - - 78.7 80.2 80.3

Table 4. The performance on PASCAL VOC datasets. All models are pre-trained on MS COCO, and fine-tuned on PASCAL VOC.

Main results

dete	mAP			
4	5	6	7	IIIAP
			\checkmark	65.6
		\checkmark	\checkmark	68.3
	\checkmark	\checkmark	\checkmark	72.5
\checkmark	\checkmark	\checkmark	\checkmark	74.2

Table 5. Combining features from different layers.



- Tao Kong, Fuchun Sun, Anbang Yao, Huaping Liu, Ming Lu, Yurong Chen. RON: Reverse Connection with Objectness Prior Networks for Object Detection, In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- Paper: https://arxiv.org/abs/1707.01691

Check out the code/models $% \left({{{\left({{{\left({{{\left({{{c}} \right)}} \right)}_{m}}} \right)}_{m}}}} \right)$

https://github.com/taokong/RON

Thanks